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Abstract. We present a fourth-order accurate algorithm for solving Poisson’s equation, the heat
equation, and the advection-diffusion equation on a hierarchy of block-structured, adaptively-refined
grids. For spatial discretization, finite volume stencils are derived for the divergence operator and
Laplacian operator in the context of structured adaptive mesh refinement (AMR) and a variety of
boundary conditions; the resulting linear system is solved with a multigrid algorithm. For time
integration, we couple the elliptic solver to a fourth-order accurate Runge-Kutta method, introduced
by Kennedy and Carpenter [12], which enables us to treat the non-stiff advection term explicitly and
the stiff diffusion term implicitly. We demonstrate the spatial and temporal accuracy by comparing
results with analytical solutions. Because of the general formulation of the approach, the algorithm
is easily extensible to more complex physical systems.
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1. Introduction. The advection-diffusion equation governs numerous physical
processes. Morton [17] lists ten sample applications ranging from semiconductor simu-
lation to financial modelling, he also observes that “Accurate modelling of the interac-
tion between convective and diffusive processes is the most ubiquitous and challenging
task in the numerical approximation of partial differential equations.” This observa-
tion is partly due to the fact that algorithms and analysis tend to be very different in
the two limiting cases of elliptic and hyperbolic equations. Also, even for very simple
initial and boundary conditions, the true solution may contain multiple length-scales
that vary drastically across the spatial domain, see (3.1) in [18] for such an example.

A finite-volume (FV) formulation is often preferred for applications where con-
servation is a primary concern. In its simplest form, the FV formulation is derived
by applying the divergence theorem over the cells of a regular computational grid:
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∫
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∇ · ~Fdx =
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where a face-averaged quantity is defined as

〈Fd〉i+ 1
2e

d ≡ 1

hD−1

∫
A

i+1
2
ed

Fd dA.(1.2)

Here h denote the uniform mesh spacing, i ∈ ZD a cell multiindex and ed ∈ ZD the
vector with its dth component one and all other components zero. Let u ∈ ZD be the
vector whose elements are all equal to one, then Vi = [ih, (i + u)h] denotes a grid cell,
Ai− 1

2e
d = [ih, (i + u− ed)h] and Ai+ 1

2e
d = [(i + ed)h, (i + u)h] the two faces of cell Vi

along the dth dimension.
The relationship (1.1) is exact; approximations are obtained from replacing the

integrals over faces (1.2) by quadratures. Traditionally, FV methods have been based
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on using the midpoint rule for the face integrals, which leads to a second-order ac-
curate discretization. More recently, there has been an increasing interest in using
methods based on higher-order accurate FV methods of this form, with quadratures
using the midpoint rule plus corrections computed using the transverse derivatives
of the fluxes; or for the case of fluxes that are linear functions of the unknowns, us-
ing deconvolution of face-averages from cell averages, following the ideas in [8, 21].
This has been done for Poisson’s equation [1], for hyperbolic problems on mapped
grids [7], and for nonlinear hyperbolic conservation laws on locally refined grids [14].
For time-dependent problems, a method-of-lines approach has been employed, us-
ing the high-order discretization methods in space, and the classical explicit fourth-
order accurate Runge-Kutta method in time. In this paper, we demonstrate that the
approach described above can be used for advection-diffusion problems based on a
semi-implicit time-discretization. In particular, we use a fourth-order accurate addi-
tive Runge-Kutta method described in [12], treating the advection terms explicitly,
and the diffusion terms implicitly, with the spatial discretization performed on locally-
refined grids. The resulting method is fourth-order accurate, with a time step stability
constraint required only for the explicitly-treated advection term.

2. Finite Volume Formulation. The advection-diffusion equation is defined
as

∂φ

∂t
= −∇ · (~uφ) + ν∆φ+ f,(2.1)

where the diffusivity ν is a constant, the velocity field ~u = ~u(x, t) and the forcing
term f = f(x, t) are known a priori. To generate a FV discretization, we average
(2.1) over each control volume, Vi, and apply the divergence theorem as in (1.1) to
obtain a system of ordinary differential equations on ZD:

d 〈φ〉i
dt

= Ladv(〈φ〉 , t)i + Ldiff(〈φ〉)i + 〈f〉i ,(2.2a)

Ladv(〈φ〉 , t)i = − 1

h

D∑
d=1

(
〈udφ〉i+ 1

2e
d − 〈udφ〉i− 1

2e
d

)
,(2.2b)

Ldiff(〈φ〉)i = ν 〈∆φ〉i =
ν

h

D∑
d=1

(〈
∂φ

∂xd

〉
i+ 1

2e
d

−
〈
∂φ

∂xd

〉
i− 1

2e
d

)
,(2.2c)

where a cell-averaged quantity is defined as

〈q〉i ≡
1

hD

∫
Vi

q(x, t)dx.(2.3)

Note that (2.2a)-(2.2c) are still exact relationships with no discretization error.
In our notation, a subscript of the form ‘〈·〉i’ indicates a cell-averaged quantity

defined by (2.3) while ‘〈·〉i± j
2e

d ’ a face-averaged quantity defined by (1.2). The differ-

ences between the three quantities account for much of the complexity of fourth-order
FV methods that is unnecessary in second-order methods. Typically, O(h4) finite vol-
ume stencils (acting on averages) are different than corresponding finite differences (of
point values), because of higher-order derivatives that must be included. Appendix
A lists the commonly used formulas and derives specific ones used here.
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2.1. Spatial Discretization. The FV formulations of the two operators, (2.2b)
and (2.2c), requires face-averaged quantities to be approximated from cell-averaged
ones. The connection between cell-averaged quantities and face-averaged quantities
for higher-order FV hyperbolic discretizations was established in [8]. For fourth-order
accuracy, we use simple differences to approximate face-averaged values from cell-
averaged values (derived in Appendix A):

〈φ〉i+ 1
2e

d =
7

12

(
〈φ〉i + 〈φ〉i+ed

)
− 1

12

(
〈φ〉i−ed + 〈φ〉i+2ed

)
+O(h4) ,(2.4)

〈
∂φ

∂xd

〉
i+ 1

2e
d

=
1

12h

(
15 〈φ〉i+ed − 15〈φ〉i − 〈φ〉i+2ed + 〈φ〉i−ed

)
+O(h4).(2.5)

The discrete FV approximations of the operators, (2.2b) and (2.2c), are derived
by substituting (2.4) and (2.5), and adding additional terms for face averages of the
product, 〈φud〉. See Appendix B for the complete derivation. The resulting discrete
FV approximations act only on cell-averaged quantities:

Ladv(〈φ〉 , t)i = − 1

h

D∑
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∑
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2e
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2e
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)
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2e
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(
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i± 1

2e
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+O(h4),

(2.6a)

(
G⊥d′q

)
i± 1

2e
d =

1

2h

(
〈q〉i± 1

2e
d+ed′ − 〈q〉i± 1

2e
d−ed′

)
;(2.6b)

〈∆φ〉i =
1

12h2

(
−30D 〈φ〉i +

D∑
d=1

∑
±=+,−

(
16 〈φ〉i±ed − 〈φ〉i±2ed

))
+O(h4),(2.7)

Note that (2.6) is the same as those in [7, 14] while (2.7) is different from the fourth-
order “Mehrstellen” stencil derived in [1], which requires a correction to the leading
error term that is not generally applicable to variable coefficient problems.

Since the discrete divergence is calculated from face-averages as in (1.1), a face-
average over any interior edge participates in the calculation exactly twice: once for
the cell at the lower side and once for the cell at the higher side. Hence the sum of
discrete divergence over the whole computational domain vanishes if the corresponding
fluxes (normal velocity or gradient) sums up to zero over the domain boundary. This
defines the conservation property of the FV formulation.

2.2. Boundary Conditions. At non-periodic domain boundaries, “ghost cells”
are used with the standard interior stencils to evaluate the advection and Laplacian
operators. For example, let 〈φ〉i denote the cell-averaged scalar of the interior cell
abutting a high-side boundary, and 〈φ〉i+ed & 〈φ〉i+2ed those of the two ghost cells
to be calculated. In the case of Dirichlet boundary conditions, we specify 〈φ〉i+ 1

2e
d =

〈g〉i+ 1
2e

d and use an extrapolation based on the integrals of interpolating polynomials;

this leads to the following ghost cell formulae for the fourth-order case:

〈φ〉i+ed =
1

3

(
−13 〈φ〉i + 5 〈φ〉i−ed − 〈φ〉i−2ed + 12 〈g〉i+ 1

2e
d

)
+O(h4);(2.8a)
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〈φ〉i+2ed =
1

3

(
−70 〈φ〉i + 32 〈φ〉i−ed − 7 〈φ〉i−2ed + 48 〈g〉i+ 1

2e
d

)
+O(h4).(2.8b)

A fifth-order interpolation leads to:

〈φ〉i+ed =
1

12

(
−77 〈φ〉i + 43 〈φ〉i−ed − 17 〈φ〉i−2ed + 3 〈φ〉i−3ed + 60 〈g〉i+ 1

2e
d

)
+O(h5);

(2.9a)

〈φ〉i+2ed =
1

12

(
−505 〈φ〉i + 335 〈φ〉i−ed − 145 〈φ〉i−2ed + 27 〈φ〉i−3ed + 300 〈g〉i+ 1

2e
d

)
+O(h5).

(2.9b)

Similarly, for Neumann-type boundary conditions we specify
〈
∂φ
∂xd

〉
i+ 1

2e
d

= 〈g〉i+ 1
2e

d ,

and a fourth-order interpolation yields:

〈φ〉i+ed =
1

11

(
9 〈φ〉i + 3 〈φ〉i−ed − 〈φ〉i−2ed + 12 〈g〉i+ 1

2e
d

)
+O(h4);(2.10a)

〈φ〉i+2ed =
1

11

(
−30 〈φ〉i + 56 〈φ〉i−ed − 15 〈φ〉i−2ed + 48 〈g〉i+ 1

2e
d

)
+O(h4),(2.10b)

while a fifth-order interpolation yields:

〈φ〉i+ed =
1

10

(
5 〈φ〉i + 9 〈φ〉i−ed − 5 〈φ〉i−2ed + 〈φ〉i−3ed + 12 〈g〉i+ 1

2e
d

)
+O(h5);(2.11a)

〈φ〉i+2ed =
1

10

(
−75 〈φ〉i + 145 〈φ〉i−ed − 75 〈φ〉i−2ed + 15 〈φ〉i−3ed + 60 〈g〉i+ 1

2e
d

)
+O(h5).

(2.11b)
We use fourth-order formulae (2.8) & (2.10) for the advection operator and fifth-order
formulae (2.9) & (2.11) for the Laplacian operator.

2.3. Nested Refinement. The uniform grid discretization above can also be
extended to structured AMR, i.e. a locally-refined, nested hierarchy of rectangular
grids. Our notation is based on previous O(h2) structured AMR work (see [13]),
but we will reiterate parts of the notation for the purpose of explaining the present
algorithm.

On a family of nested discretizations of a rectangular domain {Γl}lmax

l=0 , Γl ⊂ ZD,
control volumes V li = [ihl, (i + u)hl] are represented with multiindices i ∈ Γl, with hl

denoting the uniform mesh spacing and nlref = hl−1/hl the refinement ratio between
levels Γl and Γl−1. To relate geometric regions and variables on different levels of the
hierarchy to one another, we define a coarsening operator for indices,

Cnl
ref

(i) =

(⌊
i1
nlref

⌋
, . . . ,

⌊
iD
nlref

⌋)
.

Similarly, we define the refining operator as C−1
nl

ref
(Γl−1) = Γl.

At any given point in time, our computed solution will be defined on the com-
putational domain {Ωl}lmax

l=0 , Ωl ⊂ Γl, Cnl
ref

(Ωl) ⊂ Ωl−1, Ω0 = Γ0. The Ωl’s are

assumed to satisfy “proper nesting” conditions: C−1
nl

ref
(Cnl

ref
(Ωl)) = Ωl (coarsening or

refining levels does not change the region covered), and that there are at least sn
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points in any direction in Ωl separating Cnl+1

ref
(Ωl+1) (the finer level coarsened to l)

from C−1
nl

ref
(Ωl−1)−Ωl (the coarser level refined to l). In the case of periodic domains,

this condition is assumed to hold with respect to the periodic extensions of the grids.
In the present work, we assume sn = 3 to support the interpolation stencils, below.

The primary dependent variables on each level are defined only on the part of Ωl

not covered by finer grids:

φcomp = {φl}lmax

l=0 , φl : Ωlvalid → R(2.12a)

Ωlvalid = Ωl − C−1

nl+1

ref
(Ωl+1) , Ωcomp =

lmax⋃
l=0

Ωlvalid.(2.12b)

We generalize the definitions of the operators Ldiff, Ladv to operate on φcomp, but
with the flux calculations modified to account for the changes in grid resolution at
refinement boundaries. First, we extend the φl’s to all of Ωl by averaging down from
the finer levels

〈φ〉li =
1

(nlref)
D

∑
j∈C−1

nl
ref

({i})

〈φ〉l+1
j on Cnl+1

ref
(Ωl+1) , l = lmax − 1, . . . , 0 .(2.13)

Then, for each level, we compute approximate values of 〈φ〉 over control volumes out-
side of Ωl, to facilitate the evaluation of Ladv and Ldiff on all of Ωlvalid. The constrained
least-squares approach described in [14] is adopted to derive these “coarse-fine” inter-
polation stencils.

Specifically, we interpolate O(hP+1)-order accurate values for j ∈ C−1
nl

ref
({i}) by

computing a polynomial interpolant of the form

Pi(x) =
∑

p:pd≥0, p1+...+pD≤P

apxp, xp =

D∏
d=1

xpdd ,(2.14)

subject to the constraint that the coarse 〈φ〉l are the averages of fine values 〈φ〉l+1
j as

required by (2.13). The coefficients ap are computed as the least squares approxima-
tion to an over-determined system of linear equations 〈φ〉j = 〈Pi〉j, j ∈ N (i) where

N (i) is a collection of nearby points in Ωl, whose number exceeds the number of terms
in the sum in (2.14), and chosen so that the resulting linear system is of maximal rank
and, when appropriately scaled, well-conditioned.

For computing the fluxes in Ladv, we use the fourth-order accurate stencil (P = 3)
to fill ghost cell values, as used in [14]. For computing the fluxes in Ldiff, we use a
generalization of the same stencil that is fifth order (P = 4). For example, the stencil
away from the domain boundary is

N (i) = i +

(
[−u,u]

⋃( ⋃
±=+,−

D⋃
d=1

{±2ed + sed
′

: d′ 6= d, s = 0,±1}
))

.(2.15)

See [22] for an alternative approach.
As in [13], after the fluxes on all the levels are computed in this fashion, we replace

the fluxes on faces of level l control volumes that are adjacent to Ωl+1 by the average
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〈F1〉2i− 1
2
e1

〈F1〉2i+e2− 1
2
e1

bc 〈F1〉i+ 1
2
e1

〈F2〉i− 1
2
e2

〈F2〉i+ 1
2
e2

Fig. 2.1. Two-dimensional refluxing example for the two-level divergence operator. Cell i
is marked by ‘◦’. its coarse-fine interface χ−(i − 1

2
e1) =

{
2i− 1

2
e1, 2i + u− 3

2
e1

}
by thick line

segments.

of the fluxes at level l+1. Fig. 2.1 illustrates an example with D = 2, d = 1, i ∈ Ωlvalid,
and i−ed ∈ Cnl

ref
(Ωl+1

valid): the fluxes computed with the uniform-grid stencils in (2.2b)

and (2.2c) is replaced with

〈Fd〉li− 1
2e

d =
1

(nlref)
D−1

∑
il+1− 1

2e
d∈χ−

〈Fd〉l+1
il+1− 1

2e
d ,(2.16)

where χ− =
[
inlref − 1

2ed, (i + u− ed)nlref − u + 1
2ed
]
.

3. Time Integration. Using the nested refinement spatial discretization de-
scribed above, we obtain a system of ODE’s,

d 〈φ〉comp

dt
= Ladv(〈φ〉comp

, t) + Ldiff(〈φ〉comp
) + 〈f(t)〉 ,(3.1)

and then use the “method of lines” to advance all of the discrete variables 〈φ〉comp
in

the AMR hierarchy.
Our approach is to use an additive, implicit-explicit Runge-Kutta method intro-

duced by Kennedy and Carpenter [12] for convection-diffusion-reaction equations. In
particular, we select ‘ARK4(3)6L[2]SA’, a six-stage, fourth-order accurate, L-stable
method, with an explicit treatment for the advection operator Ladv and source term
f , and an implicit treatment for the diffusion term Ldiff. Although this method has
been shown to suffer from the well-known problem of order reduction in the stiff limit
[12, 15], it does have a good region of stability for the explicit terms, as shown in the
next section.

We integrate (3.1) by setting 〈φ〉(1)
= 〈φ〉n, and then calculate the five subsequent

stage values 〈φ〉(s), s = 2, 3, 4, 5, 6, by solving(
I −∆tγLdiff

)
〈φ〉comp,(s)

= 〈φ〉n + ∆tL̃,(3.2)
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where

L̃ =

s−1∑
j=1

a
[E]
s,j

(
Ladv

(
〈φ〉comp,(j)

, t(j)
)

+ 〈f〉 (t(j))
)

+

s−1∑
j=1

a
[I]
s,jLdiff

(
〈φ〉comp,(j)

)
,

t(s) = tn+cs∆t, and γ = a
[I]
s,s is a constant for all stages. The coefficients {a[E]

i,j }, {a
[I]
i,j},

{bj}, {cj} are defined in [12]; for completeness they are also provided in Appendix C
as decimal values [20].

At each intermediate stage s = 2, 3, 4, 5, 6, we must solve the Helmholtz-type lin-
ear system (3.2), with its RHS explicitly calculated from values of previous stages.
As discussed by Stüben [19, p.441], the negation of the fourth-order discrete opera-
tor 〈∆φ〉 defined in (2.7) is of essentially positive type [3], which carries the essential
properties of M-matrices such as positive definiteness. Consequently, the Helmholtz-
operator

(
I −∆tγLdiff

)
also has eigenvalues of positive real parts; this can be verified

by Fourier analysis. A standard multigrid method with Gauss-Seidel Red-Black re-
laxation [4] is employed in solving (3.2), with a V-cycle performed on each level of
the AMR hierarchy. In the fourth-order case, writing the results of the red relaxation
directly to the black points is incorrect, since the stencil as defined by (2.7) involves
both red and black points. Instead we use an auxiliary storage to hold the results of
the red relaxation in preparation for the ensuing black relaxation. As confirmed by
the numerical tests in Section 5, this works well for both the Laplacian operator and
the Helmholtz-like operator.

Once all six stage values are known, the final calculation,

〈φ〉n+1
= 〈φ〉(6)

+ ∆t

6∑
j=1

(
bj − a[E]

6,j

)(
Ladv

(
〈φ〉(j) , t(6)

)
+ 〈f〉 (t(6))

)
,(3.3)

provides the next time step value of 〈φ〉n+1
, and the time integration procedure is

repeated.
As the solution evolves in time, we allow the adaptive mesh grid hierarchy to

evolve as well. At the end of each time step, the grid hierarchy can be refined to track
emerging new features and/or coarsened to reduce computational expense. Typically
the cells to be changed are ‘tagged’ according to the evaluation of certain criteria; these
criteria, specified by the user, are usually based on physical quantities or estimated
errors. This dynamic grid generation is done in the standard fashion described in
[2, 13], by averaging down from finer grids to coarser grids as the former disappear,
and interpolating conservatively from coarser grids to newly refined regions. The
principal difference in the present AMR algorithm is the higher-order, conservative
coarse-fine interpolation and its supporting multigrid-based solver, as described above
and in Section 2.3.

4. Analysis. In this work, solution error refers to the difference between the
true and the computed solutions; in contrast, truncation error relates to those of
the advection and Laplacian operators, it is caused by replacing the operators with
discrete finite-difference stencils in forming the ODE system (3.1).

4.1. Error Analysis. Away from the coarse-fine interface and non-periodic
physical domain boundaries, the truncation errors for these two operators are both
O(h4), cf. (2.6) & (2.7). However, as discussed in the previous section, fourth- and
fifth-order coarse-fine interpolations of the solution 〈φ〉 are used respectively for eval-
uating the advection and diffusion operators near the coarse-fine interface. Hence
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the truncation error of both of the two operators is O(h3) for control volumes near
the coarse-fine interface. Similar statement holds for a non-periodic physical domain
boundary, due to the extrapolation formulae in section 2.2. These observations are
consistent to the discussion in Appendix B that the truncation error is O(h3) at the
coarse-fine interface due to refluxing. Nonetheless, we expect 1-norm of the truncation
error to be O(h4), since the truncation error is O(h3) only on a set of codimension 1.

For Poisson’s equation, it is well-known [10] that the accuracy of the solution
error w.r.t. the ∞-norm is one-order higher than that of the truncation error, so
long as the lower-order truncation error is restricted to a set of codimension 1. As
for diffusion processes with large higher-order derivatives and high Reynolds number
(Re ≥ 105), the lower-order truncation errors on a set of codimension 1 might lead to
solution errors of the same order [24, sec.2]. However, since this work aims to address
moderately stiff problems (with moderate to large ν), we expect the solution errors
to be fourth-order accurate for all norm types.

4.2. Stability Analysis. Using discrete Fourier analysis, we can convert the
ODE system (3.1), with constant velocity ~u and 〈f〉 = 0 on a periodic domain, to a
system of decoupled ODEs of the form

dy

dt
= λy =

(
λd + iλa

)
y,(4.1)

where λd, iλa are the eigenvalues of the diffusion and advection operators:

λd = −4
ν

h2

D∑
d=1

sin2 θd
2

(
1 +

1

3
sin2 θd

2

)
;(4.2a)

λa =
|ud,max|

h

D∑
d=1

sin θd

(
1 +

2

3
sin2 θd

2

)
,(4.2b)

with θd ∈ (0, π). Note that in deriving (4.2) we have repeatedly applied the trigono-
metric identities cos θ = 1− 2 sin2 θ

2 and sin θ = 2 sin θ
2 cos θ2 . The maximum value of

the scaled advection eigenvalue is then estimated as

(λa∆t)max = CrD

(
sin θ0 +

2

3
sin θ0 sin2 θ0

2

)
max

≈ 1.37222DCr,(4.3)

where the Courant number is defined as

Cr =
|ud,max|∆t

h
.(4.4)

Generally, the stability function of the group of Runge-Kutta methods (see [6])
in Section 3 is

R(λd + iλa) =
det
(
I − λdA[I] − iλaA[E] + (λd + iλa)1⊗ bT

)
det
(
I − λdA[I] − iλaA[E]

) ,(4.5)

where b, A[E], and A[I] are the ARK coefficients in Appendix C.
The stability region |R(z)| < 1 of ‘ARK4(3)6L[2]SA’ is plotted in Fig. 4.1. Sub-

plot (a) shows that the maximum stable Courant number increases as diffusion be-
comes stronger; subplot (b) shows that in the absence of diffusion, the scaled advection
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Fig. 4.1. Stability region of the proposed advection-diffusion solver on the complex plane: (a)
for λa ∈ [0, 15], λd ∈ [−80, 0], and (b) detailed view of λa ∈ [0, 5], λd ∈ [−2, 1].

eigenvalue should be less than 4. Together with (4.3), the range of stable Courant
number for our method is thus estimated as

Cr ≤
2.91

D
.(4.6)

The above condition is the stability condition for pure advection and is verified by
numerical experiments. In the case of strong diffusion, the stability condition might
be much more lenient. Furthermore, when timestep size is changed adaptively to
control error, which is commonly done with Runge-Kutta methods, (4.6) might be
removed as superfluous.

Strictly speaking the stability analysis in this section only applies to single level
grids since Fourier analysis does not generalize to multiple levels; however, no insta-
bilities are observed in any of our AMR tests so long as (4.6) is satisfied.

5. Results. In this section we demonstrate fourth-order convergence on test
problems for Poisson’s equation and the advection-diffusion equation with forcing
terms, and for an adaptive mesh and non-trivial advection velocity. The first problem
is for Poisson’s equation while all others are for the advection-diffusion equation.

5.1. Problem 1: Composite Sinusoidal Waves. We first address a test prob-
lem similar to [1] for Poisson’s equation on the problem domain [0, 1]D with the exact
solution

φ(x) =
∑
k

D∏
d=1

sin(kπxd),(5.1)

where {k} is a set of even integers representing different frequencies. Since the AMR
Laplacian operator may depend on data from both coarser and finer levels, we use
a static, three-level grid layout with a refinement ratio of nref = 2, as shown in Fig.
5.1. The right-hand side of Poisson’s equation is initialized exactly by using an ana-
lytical expression for 〈∆φ〉i derived from (5.1). The values of Dirichlet and Neumann
boundary conditions in Section 2.2 are calculated from sixth-order quadratures using
the exact solution.
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Fig. 5.1. A static locally-refined grid hierarchy for Problem 1. The coarsest level (` = 0) covers
the problem domain [0, 1]D. The light-gray area represents the intermediate level (` = 1), which is
decomposed by the dashed lines into seven rectangles, all of them ranges from 3/8 to 5/8 in the third
dimension. The finest level (` = 2), represented by the dark-gray square, is obtained by shrinking
Ω1

5 to half length in each dimension.

Table 5.1
Truncation and solution errors of the AMR elliptic solver applied to Problem 1 in 2D and

3D, with periodic boundary conditions and wave numbers {k} = {2, 4}. The static locally-refined
hierarchy is shown in Fig. 5.1.

Base grid h 1/64 Rate 1/128 Rate 1/256 Rate 1/512

2D Truncation L∞ 3.57e-01 2.97 4.56e-02 2.99 5.73e-03 3.00 7.17e-04
2D Solution L∞ 1.59e-05 4.14 9.00e-07 3.97 5.74e-08 3.98 3.63e-09

3D Truncation L∞ 6.84e-01 3.00 8.56e-02 3.00 1.07e-02 3.00 1.34e-03
3D Solution L∞ 1.68e-05 3.98 1.06e-06 4.00 6.66e-08 4.00 4.16e-09

Table 5.2
Truncation and solution errors of the AMR elliptic solver applied to Problem 1 in 2D, with

Dirichlet or Neumann type boundary conditions and wave numbers {k} = {2, 4}. The static locally-
refined hierarchy is shown in Fig. 5.1.

Base grid h 1/64 Rate 1/128 Rate 1/256 Rate 1/512
Dirichlet

Truncation L∞ 3.80e-01 2.97 4.86e-02 2.99 6.10e-03 3.00 7.64e-04
Truncation L1 1.46e-02 3.99 9.22e-04 4.00 5.76e-05 3.97 3.68e-06
Solution L∞ 1.50e-05 4.05 9.11e-07 3.98 5.78e-08 3.99 3.64e-09
Solution L1 4.40e-06 4.00 2.74e-07 3.98 1.73e-08 3.99 1.09e-09

Neumann
Truncation L∞ 3.80e-01 2.97 4.86e-02 2.99 6.10e-03 3.00 7.64e-04
Truncation L1 1.14e-02 4.00 7.10e-04 4.00 4.42e-05 3.96 2.84e-06
Solution L∞ 1.72e-05 4.09 1.01e-06 3.94 6.61e-08 3.97 4.21e-09
Solution L1 4.83e-06 3.93 3.17e-07 3.97 2.02e-08 3.99 1.28e-09
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Fig. 5.2. MultiGrid Convergence for Problem 1. The horizontal and vertical axes are the
number of iterations and base-10 logarithm of max-norm of the residual, respectively. ‘+’, ‘×’, ‘◦’,
‘�’ represent the four grids from coarsest to finest.

The truncation error and solution error are shown in Tables 5.1 and 5.2. Across
different types of boundary conditions, there are no differences in errors or convergence
rates. As discussed in Section 4.1, although the truncation error of Poisson’s equation
is third-order, this solution can still be fourth-order, even in the ∞-norm sense. In
addition, Fig. 5.2 demonstrates satisfactory multigrid convergence, using only two
relaxation pre- and post-sweeps during the multigrid V-cycle across the locally-refined
grid hierarchy.

5.2. Problem 2: Traveling Sinusoid Waves. For this test, we use an expres-
sion of the form φ =

∏
d sin(kdxd−udt) as an exact solution to the advection-diffusion

equation with constant velocity, with corresponding forcing term in (2.1) as

f(x, t) =

(∑
d

νk2
d

)∏
d

sin(kdxd−udt)+
∑
d

ud (kd − 1) cos(kdxd − udt)
∏
d′ 6=d

sin(kd′xd′ − ud′t)

 .

(5.2)
On a unit domain [0, 1]D, we use a static locally-refined hierarchy consisting of two
levels, with the fine level covering [ 1

4 ,
3
4 ]D, and nref = 4. In both 2D and 3D domains,

the initial condition is calculated as the exact average 〈φ〉i evaluated at t0 = 0, which
is then advanced to te = 1 with the timestep chosen such that Cr = 1.0. The
other parameters are ν = 0.01, ~u = (1.0, 0.5, 0.25) and k = (2π, 4π, 6π). Errors are
calculated between the computed and analytic solution; Tables 5.3 and 5.4 indicates
fourth-order convergence of the solution in all norms and for all types of boundary
conditions.

5.3. Problem 3: Gaussian Patch in Solid Body Rotation. Given the exact
solution to the heat equation,

φ(x, t) =

(
t

t0
+ 1

)−D
2

exp

(
− |r− rc|2

4ν(t+ t0)

)
,(5.3)

where rc is center of the patch, we can construct a solution to the advection-diffusion
equation with the velocity field defined by solid body rotation. Although solid body
rotation does not satisfy periodic boundary conditions, for short times the solution
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Table 5.3
Solution error and convergence rates for traveling waves test, Problem 2, on fixed two-level

grids with periodic boundary conditions.

Base grid h 1/32 Rate 1/64 Rate 1/128

2D L∞ 1.20e-03 3.97 7.71e-05 3.99 4.87e-06
2D L1 7.27e-06 3.95 4.72e-07 3.98 2.99e-08
2D L2 8.59e-06 3.95 5.56e-07 3.98 3.52e-08
3D L∞ 2.36e-03 3.93 1.55e-04 3.98 9.80e-06
3D L1 1.10e-06 3.94 7.21e-08 3.98 4.56e-09
3D L2 1.43e-06 3.94 9.29e-08 3.98 5.87e-09

Table 5.4
Solution error and convergence rates for traveling waves test, Problem 2, on fixed two-level grids,

with Dirichlet and Neumann boundary conditions applied to the low-side and high-side boundaries,
respectively.

Base grid h 1/32 Rate 1/64 Rate 1/128

2D L∞ 1.00e-03 3.96 6.44e-05 3.99 4.06e-06
2D L1 2.16e-04 3.95 1.39e-05 3.96 8.93e-07
2D L2 3.07e-04 3.96 1.97e-05 3.97 1.25e-06
3D L∞ 2.53e-03 4.00 1.58e-04 4.02 9.75e-06
3D L1 4.55e-04 3.97 2.90e-05 4.00 1.82e-06
3D L2 6.43e-04 3.96 4.12e-05 3.99 2.59e-06

is near zero at the velocity discontinuity, and we can consider it an approximate
solution. Choosing t0 = −r2

0/(4ν ln(ε)) for ε ≈ 10−16 guarantees that φ is less than
10−16 beyond r0 = 0.10, and that φ = 1 at the center of the patch at t = 0.

With the unit square [0, 1]2 as the periodic domain, we adaptively refine the mesh
by nref = 4 in the cells satisfying | 〈φ〉i | ≥ 10−6 on level 0, to create level 1, and with
| 〈φ〉i | ≥ 10−3 on level 1, to create level 2. At the end of each time step, these cells
are organized into finer level patches, allowing them to move and grow in time as
the solution advects and diffuses. The initial setup is shown in Fig. 5.3 (a); the
center of the solid body rotation is at (0, 1/2) with angular velocity |ω| = 2π. The
initial patch is centered at (r, θ) = (1/2,−π/6) relative to the center of rotation, with
initial radius r0 = 0.10, beyond which the solution is initialized to zero. The Courant
number based on the grid size of the finest level is 1.0 for all tests, and the numerical
Reynolds number, ReN = ‖ud‖maxhmin/ν ≈ 0.1 for ν = 0.03, based on the finest level
hmin = 1/4096. Fig. 5.3 (b) shows the resulting solution for h = 1/256 at time
te = 1/12, when the patch is centered at (1/2, 1/2). The error between the discrete
and exact solution is shown in the convergence study in Table 5.5; again, the results
are fourth order in all norms.

5.4. Problem 4: Gaussian Patch in Vortex Shear. For this problem, we
use a steady, divergence-free velocity field

~u(x, y) = aV
(
sin2(πx) sin(2πy),− sin(2πx) sin2(πy)

)
,(5.4)

where aV = 0.1 is a scaling parameter. See Fig. 16 in [23] for a rendering of this
velocity field.

On a periodic domain of the unit square [0, 1]2, the advection-diffusion equation is
advanced from t0 = 0 to te = 1/aV on three successively refined adaptive hierarchies

12



(a) initial setup

(b) final result

Fig. 5.3. Initial setup and final results for Problem 3, a Gaussian patch in solid body rotation.
On the 3-level adaptive hierarchy, light-blue and black boxes represent level 1 and level 2, respectively.

13



(a) Problem 4 solution at t = 2

(b) Problem 4 solution at t = te = 10

Fig. 5.4. Solution for Problem 4 at two time instances on a 3-level adaptive hierarchy. The
initial condition is a Gaussian blob, same as that shown in Fig. 5.3 (a) except that its center is
located at (1/2, 3/4). As it diffuses, the advection velocity stretches and shears the solution at (a)
t = 2 and (b) t = 10. Light-blue and black boxes represent level 1 and level 2, respectively.
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Table 5.5
Solution errors and convergence rates for Problem 3, a Gaussian profile in solid body rotation,

with a dynamic 3-level adaptive hierarchy using nref = 4.

Base grid h 1/64 Rate 1/128 Rate 1/256

Solution L∞ 9.38e-07 4.15 5.27e-08 4.41 2.48e-09
Solution L1 7.99e-10 4.15 4.49e-11 4.03 2.76e-12
Solution L2 2.18e-09 4.16 1.23e-10 4.11 7.09e-12

Table 5.6
Solution error (5.6a) and estimated convergence rates (5.7) of Problem 4 at te = 10 with

hmin = 1/4096.

Finest grid h 1/512 Rate 1/1024 Rate 1/2048

Solution L∞ 5.75e-06 5.19 1.58e-07 4.06 8.89e-09
Solution L1 1.51e-08 5.01 4.71e-10 4.04 2.71e-11
Solution L2 2.36e-08 5.05 7.11e-10 4.04 4.06e-11

with three levels and nref = 4, so that finest level resolutions are 1/512, 1/1024, and
1/2048. The tagging criterion is the same as that used in Section 5.3 and the Courant
number is 1.0 based on the maximum velocity ‖ud‖max. Note that this ‘absolute-
value’ tagging criterion is not intrinsic to our algorithm, it is merely an example of
various possible criteria. In our implementation, a user can customize this criteria
according to the specific application.

The test is also carried out on a single-level grid with uniform grid size of 1/4096;
the results on this fine grid are then used as the ‘best’ solution to calculate errors
on the adaptive hierarchies. Based on this single-level grid, the numerical Reynolds
number is ReN = ‖ud‖maxhmin/ν ≈ 2.44 × 10−2 for ν = 0.001. This parameter is
chosen on purpose to test the stiff stability of the ‘ARK4(3)6L[2]SA’ scheme. Two
snapshots of the solution on the finest adaptive hierarchy are shown in Fig. 5.4, at
t = 2 and te = 10, and the corrected convergence results are shown in Table 5.6.

Let hi (i = 1, 2, · · · , N) denote the grid size of the finest level in the ith hierarchy
and N the total number of successively-refined AMR hierarchies. Let r = hi/hi+1 be
the hierarchy refinement ratio. To calculate the convergence rate p from numerical
results of these hierarchies, we first write

φh = φExact + aph
p +O(hp+1),

where the coefficient ap is independent of h. Standard Richardson extrapolation
estimates the convergence rate via differences between successive hierarchies:

p ≈ logr
‖φhi

− φhi+1
‖

‖φhi+1
− φhi+2

‖ .(5.5)

Alternatively, a variant of Richardson extrapolation estimates the convergence rates
by treating the finest solution as the ‘exact’ solution. Define

Ei = ‖φhi
− φhmin

‖, i = 1, 2, · · · , N ;(5.6a)

ei =
Ei−1

Ei
=
rp(N−i+2) − 1

rp(N−i+1) − 1
, i = 2, · · · , N,(5.6b)
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where the grid size of the ‘exact’ solution is hmin = hN/r, and eh the computed error
ratio of two successive hierarchies, (5.6b) can be solved for rp, and then p. For i = N
and i = N − 1, we have

p ≈ logr(eN − 1), p ≈ logr

(√
e2
N−1 + 2eN−1 − 3 + eN−1 − 1

)
− 1.(5.7)

The difference between the estimated convergence rates by (5.5) and (5.7) is negligible
in the asymptotic range, but might be substantial if the grid sizes are not small enough.

In this test, N = 3, r = 2, and we first compute the solution error by (5.6a)
and then the convergence rates by (5.6b) and (5.7). As shown in Table 5.6, the
resulting convergence rates are 4 or greater. Note that the error estimate at the finest
grid is eight orders of magnitude smaller (10−8) than the maximum solution value,
which with the convergence rate would indicate the convergence is in the asymptotic
range. For the coarsest grid, h = 1/512, the rates are greater than the asymptotic
fourth-order, which might be an indication of ‘ARK4(3)6L[2]SA’ losing accuracy due
to stiffness of the system at the largest time step of the coarsest grid, as discussed
in [12, 15]. At the coarser grid resolution and time step, the solution is slightly
under-resolved due to the rapid diffusion of the Gaussian peak.

6. Conclusions and Future Research. We have presented a fourth-order ac-
curate algorithm for solving the advection-diffusion equation with adaptive mesh re-
finement. The algorithm’s AMR-enabled multigrid solver is general and can be ap-
plied to Poisson’s equation and the heat equation in 2D and 3D, with a variety of
boundary conditions, without modification. Although the spatial discretization was
chosen to be fourth-order accurate, the algorithm — based on approximating fluxes
using quadratures — is general and can be extended to higher orders in space, and
applied across a variety of generalized mixed hyperbolic, elliptic and parabolic equa-
tions. The uniqueness of our approach lies in the combination of fourth-order finite
volume stencils, AMR, the ARK time integrator and multigrid solvers, all of which
are general and capable of handling variable-coefficient problems and are fundamental
components of solvers for more complicated PDE’s.

Our immediate research concern is a fourth-order accurate adaptive algorithm
for solving the incompressible Navier-Stokes equations, using a projection algorithm
such as a generalization of the one in [13]. For periodic domains, we expect this to
be a straightforward task; see [11, 16] for related work. However, in the presence of
solid-wall boundaries, the lack of commutativity between the Laplacian operator and
the Hodge projection operator is a nontrivial technical barrier [5] to be overcome in
extending the present method to that case. In addition, we will need to adapt the
method in [14] to support refinement in time for the diffusion operators, along with
robust limiters and min/max preservation near discontinuities.

Appendix. A. From Cell-averaged to Face-averaged Quantities.
Face averaged and cell-averaged quantities can be expressed in terms of point

values with second-order correction terms:

〈φ〉i+ 1
2e

d = φi+ 1
2e

d +
h2

24

∑
d′ 6=d

∂2φ

∂x2
d′

∣∣∣∣∣∣
i+ 1

2e
d

+O(h4) and,(A.1)

〈φ〉i = φi +
h2

24

D∑
d=1

∂2φ

∂x2
d

∣∣∣∣∣
i

+O(h4),(A.2)
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where φi+ 1
2e

d and φi denote the point values at the center of Ai+ 1
2e

d and Vi, respec-
tively.

The derivation is as follows. Let

Φ(x) =

∫ x

ξ

φ(x′) dx′,(A.3)

denote an indefinite integral with its lower limit ξ fixed. The average of φ over the
interval [i− 1

2 , i+ 1
2 ]h can be obtained by

h 〈φ〉i = δΦi(y) = Φi+ 1
2
− Φi− 1

2
= Φ

((
i+

1

2

)
h

)
− Φ

((
i− 1

2

)
h

)
.(A.4)

The first fundamental theorem of calculus yields

φ(x) =
∂Φ

∂x
.(A.5)

Taylor expansions of Φi+ 3
2
, Φi− 1

2
, Φi+ 5

2
, Φi− 3

2
at (i+ 1

2 )h yield
1 1 1 1

−1 1 −1 1

2 4 8 16

−2 4 −8 16




h

h2

2

h3

6

h4

24




∂Φ
∂x

∂2Φ
∂x2

∂3Φ
∂x3

∂4Φ
∂x4


i+ 1

2

=


δΦi+1

−δΦi
δΦi+1 + δΦi+2

−δΦi−1 − δΦi

+O(h5).

(A.6)
Hence

hφ

h2 ∂φ
∂x

h3 ∂
2φ
∂x2

h4 ∂
3φ
∂x3


i+ 1

2

=


2
3 − 2

3 − 1
12

1
12

4
3

4
3 − 1

12 − 1
12

−1 1 1
2 − 1

2

−4 −4 1 1




δΦi+1

−δΦi
δΦi+1 + δΦi+2

−δΦi−1 − δΦi

+O(h5).(A.7)

Construct an auxiliary matrix

M =


1
−1

−1 1
1 −1

 ,(A.8)

and add M−1M into the middle of the RHS of (A.7), we have
φ

h∂φ∂x

h2 ∂
2φ
∂x2

h3 ∂
3φ
∂x3


i+ 1

2

= P(4)


〈φ〉i+1

〈φ〉i
〈φ〉i+2

〈φ〉i−1

+O(h4),(A.9)
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where the fourth-order interpolation matrix P(4) is

P(4) =


7
12

7
12 − 1

12 − 1
12

5
4 − 5

4 − 1
12

1
12

− 1
2 − 1

2
1
2

1
2

−3 3 1 −1

 .(A.10)

The above procedures can be easily generated to higher order accuracies, e.g., the
fifth-order interpolation matrix is

P(5) =



49
60

9
20 − 13

60 − 1
20

1
30

5
4 − 5

4 − 1
12

1
12 0

− 9
4

1
2

3
2

1
4 − 1

4

−3 3 1 −1 0

7 −4 −4 1 1


,(A.11)

where the additional column is associated with 〈φ〉i+3. Note that the formulae of

fourth-order and fifth-order coincide for ∂φ
∂x .

In a multi-dimensional space, averaging the first row of (A.9) over all other di-
mensions yields (2.4). Using the second row of (A.11) and averaging an equation
similar to (A.9) yield (2.5).

Appendix. B. Discrete Advection and Laplacian Operators.
Denote the cell center of Vi by xi =

(
i + 1

2u
)
h, the face centers by xi± 1

2e
d =

xi ± h
2 ed. Let xc = xi+ 1

2e
d be the center of Ai+ 1

2e
d . Then the Taylor series of a

function φ about xc can be expressed using standard multi-index notation [9]:

φ(x) =
∑
|j|≤3

1

j!
(x− xc)

j
φ(j)(xc) +O(h4) =

∑
|j|≤3

1

j!
ηjφ(j)(xc) +O(h4) ,(B.1)

where η = x− xc, so that ηd = 0 and |η| ≈ O(h) on Ai+ 1
2e

d .

Then the convolution of two functions φ, ψ : RD → R is

φ(x)ψ(x) =

∑
|j|≤3

1

j!
ηjφ(j)(xc)

∑
|k|≤3

1

k!
ηkψ(k)(xc)

+O(h4)

=
∑

k:|k|≤3

1

k!
ηk
∑
j:j≤k

(
k

j

)
φ(j)(xc)ψ

(k−j)(xc) +O(h4) .

and the average over Ai+ 1
2e

d (dropping indices on A and evaluation at xc) is

1

hD−1

∫
A

φψ dx =
1

hD−1

∫
A

∑
k:|k|≤3

1

k!
ηk
∑
j:j≤k

(
k

j

)
φ(j)ψ(k−j) dx +O(h4)

=
∑

k:|k|≤3

1

k!

(
1

hD−1

∫
A

ηk dx

) ∑
j:j≤k

(
k

j

)
φ(j)ψ(k−j) +O(h4) .

18



Note that if k is odd in any component, or kd 6= 0, then the contribution of the
integral of ηk is 0. Hence, the only nonzero terms come from the choices of k = 0,
j = 0 and k = 2ed

′
, j = 0, ed

′
, 2ed

′
with d′ 6= d.

1

hD−1

∫
A

φψ dx

= φψ +
h2

24

∑
d′ 6=d

(
φ

(
2ed′

)
ψ + ψ

(
2ed′

)
φ

)
+
h2

12

∑
d′ 6=d

(
φ

(
ed′

)
ψ

(
ed′

))
+O(h4)

=

φ+
h2

24

∑
d′ 6=d

φ

(
2ed′

)ψ +
h2

24

∑
d′ 6=d

ψ

(
2ed′

)+
h2

12

∑
d′ 6=d

(
φ

(
ed′

)
ψ

(
ed′

))
+O(h4)

= 〈φ〉i+ 1
2e

d 〈ψ〉i+ 1
2e

d +
h2

12

∑
d′ 6=d

(
φ

(
ed′

)
ψ

(
ed′

))
+O(h4) ,

where we have used (A.1) to convert the first two terms in parentheses to face-averaged
quantities.

The last term, representing the product of “transverse gradients”, can be approx-
imated with

G⊥d′φ
∣∣
i+ 1

2e
d =

1

2h

(
〈φ〉i+ 1

2e
d+ed′ − 〈φ〉i+ 1

2e
d−ed′

)
=

∂φ

∂xd′

∣∣∣∣
i+ 1

2e
d

+O(h2) ,

leading to O(h4) overall for the average flux formula:

〈φψ〉i+ 1
2e

d = 〈φ〉i+ 1
2e

d 〈ψ〉i+ 1
2e

d+
h2

12

∑
d′ 6=d

(
G⊥d′φ

∣∣
i+ 1

2e
d G
⊥
d′ψ
∣∣
i+ 1

2e
d

)
+C3(xi+ 1

2e
d)h4+O(h5).

(B.2)
Substituting ud for ψ yields the discrete advection operator in (2.6a); the O(h4)
accuracy in (2.6a) is due to the cancellation caused by the symmetry of the difference
stencils, i.e. C3(xi+ 1

2e
d)− C3(xi− 1

2e
d) = O(h).

As for the discrete Laplacian operator, we identify ~F = ∇φ in (1.1) to obtain

〈∆φ〉i =
1

h

D∑
d=1

(〈
∂φ

∂xd

〉
i+ 1

2e
d

−
〈
∂φ

∂xd

〉
i− 1

2e
d

)
(B.3)

From the second row of the fifth-order interpolation matrix (A.11), we have〈
∂φ

∂x

〉
i+ 1

2e
d

=
1

12h

(
15 〈φ〉i+ed−15 〈φ〉i−〈φ〉i+2ed+〈φ〉i−ed

)
+C4

(
xi+ 1

2e
d

)
h4+O(h5),

which leads to an equation identical to (2.7):

〈∆φ〉i =
1

12h2

D∑
d=1

(
16 〈φ〉i+ed + 16 〈φ〉i−ed − 30 〈φ〉i − 〈φ〉i+2ed − 〈φ〉i−2ed

)
+O(h4),

where we have used the fact that

C4(xi+ 1
2e

d)− C4(xi− 1
2e

d) = h
∂C4

∂xd

∣∣∣∣
xi

+O(h3).
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From the derivation, it is clear that the fourth-order truncation error of (2.6) &
(2.7) depends on the cancellation of the leading error functions C3 and C4. However,
for a coarse cell close to the coarse-fine interface where the coarse flux is replaced by
the average of the fine fluxes, the truncation error is only third order accurate due to
the lack of this cancellation.

Appendix. C. ARK4 Coefficients.

Kennedy and Carpenter [12] studied a group of implicit-explicit Runge-Kutta
schemes from third- to fifth-order accurate with the following form:

c[E] A[E]

(
b[E]

)T
(
b̂[E]

)T =

0 0 0 0 · · · 0 0

2γ 2γ 0 0 · · · 0 0

c3 a
[E]
31 a

[E]
32 0 · · · 0 0

...
...

...
...

. . .
...

...

cs−1 a
[E]
s−1,1 a

[E]
s−1,2 a

[E]
s−1,3 · · · 0 0

1 a
[E]
s,1 a

[E]
s,2 a

[E]
s,3 · · · a

[E]
s,s−1 0

b1 b2 b3 · · · bs−1 γ

b̂1 b̂2 b̂3 · · · b̂s−1 b̂s

;(C.1)

c[I] A[I]

(
b[I]
)T

(
b̂[I]
)T =

0 0 0 0 · · · 0 0

2γ γ γ 0 · · · 0 0

c3 a
[I]
31 a

[I]
32 γ · · · 0 0

...
...

...
...

. . .
...

...

cs−1 a
[I]
s−1,1 a

[I]
s−1,2 a

[I]
s−1,3 · · · γ 0

1 b1 b2 b3 · · · bs−1 γ

b1 b2 b3 · · · bs−1 γ

b̂1 b̂2 b̂3 · · · b̂s−1 b̂s

.(C.2)

The coefficients of the particular method used in this work, ‘ARK4(3)6L[2]SA’,
in decimal form [20], are γ = 0.25, c[E] = c[I] = c, b[E] = b[I] = b:

c = (0.0, 0.5, 0.332, 0.62, 0.85, 1.0)T

b1= 0.15791629516167136,

b2= 0.,

b3= 0.18675894052400077,

b4= 0.6805652953093346,

b5= -0.27524053099500667,
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a
[E]
31 = 0.221776,

a
[E]
32 = 0.110224,

a
[E]
41 = -0.04884659515311857,

a
[E]
42 = -0.17772065232640102,

a
[E]
43 = 0.8465672474795197,

a
[E]
51 = -0.15541685842491548,

a
[E]
52 = -0.3567050098221991,

a
[E]
53 = 1.0587258798684427,

a
[E]
54 = 0.30339598837867193,

a
[E]
61 = 0.2014243506726763,

a
[E]
62 = 0.008742057842904185,

a
[E]
63 = 0.15993995707168115,

a
[E]
64 = 0.4038290605220775,

a
[E]
65 = 0.22606457389066084

a
[I]
31= 0.137776,

a
[I]
32= -0.055776,

a
[I]
41= 0.14463686602698217,

a
[I]
42= -0.22393190761334475,

a
[I]
43= 0.4492950415863626,

a
[I]
51= 0.09825878328356477,

a
[I]
52= -0.5915442428196704,

a
[I]
53= 0.8101210538282996,

a
[I]
54= 0.283164405707806,
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